

NPS-CS-10-009

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited

 Prepared for: Office of the DoD Chief Information Officer

1851 S. Bell St., Suite 600
Arlington, VA 22202

Putting Order Into the Cloud:
Object-oriented UML-based Rule Enforcement

for Document and Application Organization

by

D. Drusinsky, J.B. Michael, T.W. Otani and M. Shing

September 2010

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President and
 Provost

This report was prepared for and funded by the Office of the DoD CIO.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Doron Drusinsky
Associate Professor of Computer Science
Naval Postgraduate School

Reviewed by: Released by:

___________________________ ____________________________
Peter J. Denning, Chairman Karl A. van Bibber
Department of Computer Science Vice President and Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for
Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
20 Sep 2010

2. REPORT TYPE
Technical Report

3. DATES COVERED (From - To)
Jan 18 – Sep 30, 2010

4. TITLE AND SUBTITLE
Putting Order Into the Cloud: Object-oriented

5a. CONTRACT NUMBER
 DWAM00390

UML-based Rule Enforcement for Document and Application
Organization

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Doron Drusinsky, James Bret Michael

5d. PROJECT NUMBER

Thomas W. Otani, Man-Tak Shing 5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Naval Postgraduate School
1411 Cunningham Road,
Monterey, CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER
NPS-CS-10-009

 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S
ACRONYM(S)

Office of DoD Chief Information Officer
1851 S. Bell Street 11. SPONSOR/MONITOR’S
Suite 600 REPORT NUMBER(S)
Arlington, VA 22202
 12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES
The views expressed in this report are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

14. ABSTRACT
Cloud computing describes a new distributed computing paradigm for IT data and
services that involves over-the-Internet provision of dynamically scalable and
often virtualized resources. While cost reduction and flexibility in storage,
services, and maintenance are important considerations when deciding on whether or
how to migrate data and applications to the cloud, large organizations like the
Department of Defense need to consider the organization and structure of data on
the cloud and the operations on such data in order to reap the full benefit of
cloud computing. This report describes how object-oriented design using the UML, in
addition to providing source control tools tailored for use in the cloud, can
provide effective management of contents in the cloud, or what we term cloud
control.

15. SUBJECT TERMS
Cloud computing, object and content management, document sharing

16. SECURITY CLASSIFICATION OF:

17.
LIMITATION
OF
ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON
Doron Drusinsky

a. REPORT
Unclass-
ified

b. ABSTRACT
Unclass-
ified

c. THIS PAGE
Unclass-
ified

UL

34

19b. TELEPHONE NUMBER
(include area code)
831-656-2168

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK

 1

ABSTRACT

Cloud computing describes a new distributed computing paradigm for IT data and
services that involves over-the-Internet provision of dynamically scalable and often
virtualized resources. While cost reduction and flexibility in storage, services, and
maintenance are important considerations when deciding on whether or how to migrate
data and applications to the cloud, large organizations like the Department of Defense
need to consider the organization and structure of data on the cloud and the operations on
such data in order to reap the full benefit of cloud computing. This report describes how
object-oriented design using the UML, in addition to providing source control tools
tailored for use in the cloud, can provide effective management of contents in the cloud,
or what we term cloud control.

 2

THIS PAGE INTENTIONALLY LEFT BLANK

 3

1. Introduction
Most personal and business documents are organized in an ad hoc manner.

Consider for example, a person who organizes his or her personal bank statements in
folders, with each folder containing sub-folders labeled by year, each of which contains
two subfolders named checking and savings, with twelve checking and twelve savings
bank statement PDF files in each, respectively. In addition, he or she may have a separate
folder named taxes, which also has subfolders labeled by year, each subfolder containing
an electronic version of the corresponding annual tax return as well as scanned copies of
receipts pertaining to allowed deductions such as mortgage interest payments and
property tax statements. Clearly, in the event of an audit, this person will need to recreate
the ad hoc relationships between those respective folders and files. For instance, the
person being audited may be requested to supply all bank statements and receipts
associated with the last three annual tax returns. Given the ad hoc organization of the
documents the person must rely on his or her memory and manual navigation when
traversing such relationship associations. Such an approach does not scale up for large
organizations such as the Department of Defense (DoD) with approximately 3.5 million
users who need the ability to share documents located in the cloud.

Contemporary object-oriented (OO) modeling uses the standard Unified Modeling
Language (UML) to model classical OO principles of encapsulation, inheritance, and
polymorphism as well as entity relationships
(http://en.wikipedia.org/wiki/Unified_Modeling_Language). The major benefits of OO
modeling, design and subsequent implementation are reusability, reliability, robustness,
extensibility, and maintainability. After almost a quarter of a century of worldwide
experience, the success of the OO and UML-based software engineering approach is
widely accepted.

In the practice of modern software engineering, data is represented as objects and
the entities responsible for performing operations on those objects are methods. OO
encapsulation means that operations can only operate on designated properties of
designated types of objects. The principle of encapsulation, now a key part of the
prevailing OO software engineering approach, was a significant departure from the state
of the art in the 1950’s to the 1980’s, when programming languages such as C allowed
operations (C functions) to access data structures with few constraints other than the
programmers common sense.

In this paper, we use the term document objects to refer to data objects which are
documents. In the document object world - in which most lay computer users operate,
applications are the entities that perform operations on document objects. Most
contemporary platforms allow applications almost unlimited access to document objects.
For example, it is not uncommon to hear an end user complain that an Excel document
was corrupted after he or she edited it with Wordpad or Notepad and inadvertently
changed an XML tag. Similarly, an end user can inadvertently change the total dollar
amount field of a cost proposal instead of the labor field of the same proposal.

 4

This report presents a technique for the specification and enforcement of
relationships between document objects as well as relationships between document
objects and the different applications using software engineering based Object-oriented
(OO) modeling and enforcement.

The transition from a desktop-centric work environment to a cloud-centric
environment provides an opportunity to rethink the way document objects and
applications are organized, in addition to the way they are stored and delivered.

Source control is an additional popular and relevant software engineering
technology that has been in use for more than two decades. In this paper we propose
using a similar approach, called cloud control (CC), to control objects and applications
on the cloud. In this report, we explain how CC can be used as an integral part of an
enforcement scheme for the recommended document and application organization
approach.

2. Object-Oriented Document and Application Organization

2.1 A Financial Documents Example
Consider the financial document organization example depicted in Figure 1. It

consists of three abstract classes, Account, PersonalAcct and BusinessAcct. Being
abstract means, in our context, that no document object exists for these classes. For
example, from the document point of view, there is no explicit file or folder object
representation for a bank account on the file system; information about bank accounts
(e.g., name and SSN that are defined in the Account and PersonalAcct classes and
inherited into the PMonthlyStmt and PTaxReturn classes) are captured in the files
corresponding to the monthly statements and tax returns instead. There are two kinds of
accounts, personal accounts and business accounts. A business account is related to one
to five personal accounts of the business directors, and a personal account can be
associated with any number of business accounts. A personal account contains two
different types of documents (PMonthlyStmt and PTaxReturn) while a business account
contains three different types of documents (BMonthlyStmt, BTaxReturn, and
ExpenseReport). An expense report must be associated with a monthly statement for a
business account and each monthly statement may be associated with a tax return
document for either personal or business accounts. An expense report consists of a
plurality of expense elements, where an element is a part of a document object. Like an
abstract class, no document object exists for an element class; an element object contains
data that are elements of some other objects. A tax return document may be associated
with the tax return document of the previous year. In addition to these relationships,
classes contain properties and methods, such as PMonthlyStmt class containing a
getExpenses() method.

The UML diagram of Figure 1 is but a visual depiction of a schema; its XML
schema counterpart is listed in Appendix A. Instances of the document and application
objects that satisfy a schema are called aggregate documents. As with programming

 5

counterparts, the cloud can contain a large plurality of aggregate documents that satisfy a
given schema. Clearly, this empowers organizations to formally specify document
ordering schemas rather than relying on ad hoc end-user organization instances, or
relying on the end user to comply with and manually implement some written
specification of a mandated document organization schema.

To this end, documents must contain clearly marked property and association
segments. Contemporary document objects often contain such information: they are often
Extensible Markup Language (XML) documents whose elements are effectively
properties, and they often contain links to other documents, for example using a Uniform
Resource Identifier (URI) or Uniform Resource Locator (URL) format. Associations can
be implemented as embedded URIs or as external information stored by the CC discussed
in the Section 5. Absent in contemporary document objects however is a specification of
the applications that are permitted to operate on those object types and the specific
properties that can be read from and written to.

<<abstract>>
PersonalAcct

1..5

0..1 0..1
prevYear 0..1 0..1

prevYear

1

0..1

12 1 12 1

1..*

<<abstract>>
Acct

Name
getName()

SSN
getSSN()

<<abstract>>
BusinessAcct

Tax ID
getTaxID()

PMonthlyStmt
month
dateOfIssue
getStmtMonth()

PTaxReturn
year

getYear()
getExpenses()
getDeductibles()

BMonthlyStmt
month
dateOfIssue
getStmtMonth()

BTaxReturn
year

getYear()
getExpenses()
getDeductibles()
getProfit()

ExpenseReport
date
total
getDate()
getTotalExpenses()

<<element>>
ExpenseItem

date
cost
description

director

tax_owner tax_owner

item

monthlyExpenseRpt

getExpenses()

*

changeExpense(
 ExpenseItem e)

Figure 1. Class diagram schema for banking

 6

2.2 Adaptation of Classical OO Principles to Document Objects and Applications
The three defining properties of classical OO programming (OOP) are

inheritance, encapsulation, and polymorphism. In this section we examine their
adaptation to the world of document objects and applications.

In OOP, inheritance is a way to form new classes (instances of which are called
objects) using classes that have already been defined. Inheritance provides for reusing
existing code with little or no modification. In our context, document objects may enjoy
the inheritance principle in a similar manner. Consider a cloud repository with two types
of documents, checking document (CheckingDoc) and savings document (SavingsDoc).
They are both special types of a banking document (BankingDoc), as depicted in the class
diagram of Figure 2. The BankingDoc parent has properties for the business name, date
of creation, and account status. Given that most present day documents are stored in
XML format, one can expect to locate those properties in the corresponding files; for
instance, a BankingDoc has an XML element or elements that pertain to the
abovementioned properties. Hence, a SavingsDoc virtually contains a name, date of
creation, and status although these properties are not present in the SavingsDoc file;
rather, their existence is deduced using the inheritance relationship. Note that we might
expect to find a mismatch between the namespaces used by documents and those used by
the schema, this issue should be resolved by the discovery step discussed below.

In the most general case, all child documents (i.e., checking and savings type
documents) will therefore virtually contain property fields exposed by a parent (UML
exposure is using a classifier such as protected or public) although they do not exist
verbatim in the respective files. In such a situation, when applying a changeStatus
application to a checking document, it changes the status property of its parent banking
document. A private qualification in the parent is also useful in our OO cloud
interpretation, meaning that no application that is applied to a child document can access
the respective parent property field.

Child documents can obviously have their own fields and corresponding
applications. For example, a savings document in Figure 2 is specified to allow a
readAsSavings application, one that we envision highlights all information that pertains
to the interestRate property.

 7

Figure 2. Inheritance in a business banking document repository

In OO programming, encapsulation refers to the encapsulation of properties and
operations so that their interactions become clearly identified. For example, the Java
class of Listing 1 contains two properties and an operation that operates on those
properties only.

Class Foo {
 int x,y;

 …

 int qsum() {

 return x*x+y*y ;

 }

}

Listing 1. Encapsulation example in Java.

To this end, the financial documents example of Figure 2 manifests encapsulation,
as in the following examples:

• A readAsSavings application can only be applied to a savings document.

• The BankingDoc parent also permits a changeStatus application access, namely,
an application that changes the status property is allowed access to a banking
document, that is, to any CheckingDoc and SavingsDoc type document; no other
application access is specified as allowed.

Clearly one needs to define a convention for identifying the properties a given
application is allowed to operate on. For example, one possible convention is to use the
application name changeStatus to imply that that application can only affect the status

 8

field/property. A different approach is to use the formal arguments in the UML diagram,
such as changeExpense(ExpenseItem e) of Figure 1 meaning that the changeExpense
application can only modify the ExpenseItem field of the ExpenseReport document; we
can further restrict the changeExpense application’s access to the ExpenseItem field to
read-only with the formal argument changeExpense(final ExpenseItem e).

Note that encapsulation in OO programming is a human modeling and design
concept, not necessarily an implementation feature. An OO program, such as the Java
class in Listing 1 realizes the object as a data structure (the x,y values) on the heap, but
the qsum code actually executes elsewhere—in a thread. Likewise, a cloud user can
benefit from encapsulation as an organizational and control feature, yet implementation
can still keep data objects and applications separate.

On OO programming, subtype polymorphism, also universally called just
polymorphism, is the ability of one type, A, to appear as and be used like another type, B.
The same principle applies well to cloud documents. For example, consider a
modification of the hierarchy of Figure 2 in which: (i) a banking document allows an edit
application for the purpose of editing of a banking document’s name field only, and (ii) a
savings document also allows an edit operation for the purpose of modifying the interest
rate in addition to the operations permitted on the parent. If the end user applies an edit
application to a checking document it will (using inheritance) apply it using (i), whereas
an edit application to a savings document will apply it using (ii).

3. Adaptation of Entity Relationships to Document Objects
Classical OO modeling (of inheritance, encapsulation, and polymorphism) was

merged with entity-relationship (ER) diagramming to create the UML class diagram
notation, such as in Figure 1.

Some examples of relationships that must exist in an aggregate document that
conforms to the schema of Figure 1 are:

• An expense report document must contain at least one expense element.

• A tax return document must be associated with twelve monthly statement
documents.

• A business monthly statement can contain an expense report, but no more than
one.

The next section addresses the question of whether unspecified relationships are
permitted to exist on the actual cloud.

4. Rule Enforcement
Enforcement is the automated activity of enforcing the document organization

schema on instances of actual documents and applications. The enforcement engine must
check all relationships and properties in the actual document set for conformance with
the schema. For example, per the schema introduced in Figure 1, the enforcement engine
will check that all relationships specified in Figure 1 are conformed to by the document

 9

instances. Figure 1 specifies, for instance, that personal monthly bank statements
(instances of PMonthlyStmt class, e.g., in PDF format) are associated with PTaxReturn
object instances.

In addition, the enforcement engine must validate that instance documents on the
cloud contain the properties specified by Figure 1. Moreover, the enforcement engine
also restricts applications to operate only on certain data elements as specified by the
schema; for example, changeExpense of the ExpenseReport class of Figure 1 is specified
to operate only on instances of the ExpenseItem class (which is an element class, i.e., no
verbatim ExpenseItem file needs to exist on the platform). According to the class diagram
an ExpenseItem element must be a constituent element of an ExpenseReport document.
Consequently changeExpense is prohibited from touching anything in any ExpenseReport
file other than the ExpenseItem instances, in contrast with contemporary applications that
are free to do whatever they elect to do on their target documents. With most cloud
implementations being based on prevailing contemporary operating systems, this kind of
enforcement is not readily available. One possible solution however is for an event-based
enforcement engine, discussed below, to allow objects “checkout” only when the request
is made by an application that satisfies the criteria set by the schema.

4.1 Schema Enforcement Scheduling
Two enforcement scheduling approaches come to mind: periodic and event-based.

A periodic enforcement engine traverses the cloud much like a crawler traverses the
Internet. When it discovers objects it validates their structure (i.e., are the objects’ actual
properties in compliance with the schema), and traverses associations to yet another
object on the cloud, for which it repeats the abovementioned procedure. This process
amounts to graph traversal with additional validation of object-structure in each node.

The drawbacks of a periodic enforcement scheduling approach is that it does not
detect violations at the time an end user of the system takes actions that violate a schema.
For example, per the schema of Figure 1, if an end user removes a BMonthlyStmt
document then all links in associated ExpenseReport documents break, yet the discovery
of this anomaly will probably be delayed.

An event-driven enforcement scheduling approach means that a schema is
validated whenever a relevant event occurs, such as a user modifying, moving, copying,
or renaming a document file. One possible event-driven enforcement approach makes
good use of a CC system, as follows. Because the CC serves as a gateway to the cloud,
no object or application really exists unless the CC says so. As with source control
counterparts, every meaningful modification to the elements registered in the CC is first
detected by the CC, allowing the enforcement engine to validate the integrity of the
document set and its conformance to all schemas. If the validation fails, the action is
disallowed; as with their source control counterparts, CC has the capability to rollback
the state of the repository or even, in some implementations, block the violating action.

 10

4.2 Multi-Schema Considerations
We envision environments in which a plurality of schemas are used and enforced.

In such a context a single document type (e.g., class BTaxReturn of Figure 1) may be
specified in more than one schema. The following are several interesting cases that could
arise:

• Multiple inheritance. A document class A might be specified to extend class B in
one schema and class C in another. There is no ill-defined relationship here; the
specified inheritance relationships will be enforced and used when their
corresponding schema is enforced.

• Union of associations. A document class A might have association rel_1 with
class D specified by one schema and association rel_2 with class E specified by
another schema. Even if the two relationships are different (e.g., D ≠ E) then,
again, the situation does not induce an ill-defined relationship; the specified
associations will be enforced and used when their corresponding schema is
enforced. However, a conflict might occur if D = E and the respective
quantification do not agree, such as one having minOccurances = 5 and the other
having maxOccurances = 1. Clearly, the enforcement tool must prune out such
contradictions when a schema is deployed.

• Unspecified associations. We suggest that if a document object has a relationship
that does not conform to any schema then rule enforcement must identify this as
an error.

We also envision a situation where hierarchical organizations will impose
schemas in a hierarchical manner, much like state laws exist in addition to federal laws.
To this end, an additional required feature is the ability of a schema to disallow certain
associations. For example, an accounting firm might disallow direct associations between
an expense report type document and a tax return document. Note that the XML approach
of using maxOccurences=0 constraint in an XML schema file is insufficient because it
relates only to a specific association between two entities, not to all possible associations
between that pair.

5. Cloud Control
The jury has been out for many years regarding the added value of source control

to the software design and development process. The following aspects of source control
lend themselves nicely to the cloud and CC environment.

• Multiuser environments. Software projects often have multiple developers. An
object (e.g., a Java source code file) is often owned by a certain developer, but is
often also developed by multiple simultaneous users.

 11

We see a similar trend in the emerging cloud world; for example, multiple users
owning and co-editing a shared Google Docs document for a Pot-Luck lunch
organization.

• Ownership. More often than not, objects change ownership over time, as when the
original developer leaves the company, so much so that ownership manifestation
is often reduced to a list of author comments on the top of a source code file. In
other words, a source-controlled document has a life of its own that persists
beyond the lifespan of an individual employee or that of a certain machine.
Source control is therefore the tool organizations use to locate objects. Document
objects have a similar lifecycle, with CC providing the same lifecycle ownership
support.

• Storage. The location of the source control repository can be independent of the
location of an individual developer; in fact, source control systems cater well for a
distributed development team work environment.

Clearly, such flexibility is one of the most obvious benefits lay people see in the
cloud approach.

• Online vs. Offline usage. Engineers tend to use source control in two modes: one
is directly connected to the repository, and the other is offline, with frequent
commits. Many source control tools support both modes of operation. The second
approach is useful when working offline, and as a means for developing code and
not committing it until tested or approved by a higher authority.

Clearly, these use cases exist for many cloud users who are concerned about the
availability of their data during network down times. One difference between
source control and CC is the availability of applications, which is not supported
by offline source control, yet we envision that offline cloud users will have access
to some of their applications.

• Visualization. As illustrated in Figure 3, visualization provides clear interactive
indication as to the status of every object, where a marked object (e.g., the
StatechartLicenseAdmin.java file in Figure 3) means that its local version differs
from the repository version. Similar visualization will also be beneficial to cloud
users.

 12

Figure 3. Subsclipse (Eclipse SVN plug-in) visual cue for a modified file

• Version control. Programmers need to be able to revert to old versions without
being required to manually store and label them. They also need to be able to
branch out multiple development branches (e.g., two teams working on two
porting projects for a Windows application, one to Linux and the other to Mac).
Similarly, cloud document authors often perform document branching.

5.1 Cloud Control versus Source Control
Source control, also known as version control or software configuration control,

deals with the management of changes to documents, programs, and other information
stored as computer files. Typical functions supported by a source control tool include:

• Management of the physical storage of files in the repository and in the working
folders of individual developers.

• Management of the historical record of the changes made on the files over time
via version numbers, labels and tags.

• Checkin/checkout mechanisms to control concurrent access to the files.

• Merge and branching mechanisms to allow developers to work on different parts
of the software in parallel and merge their efforts later.

In addition to the aforementioned source control functions, any tool that supports
cloud control should also provide functionalities to:

• Specify and enforce the schematic rules on the relationships between the different
document objects.

• Specify and enforce the relationship between the document objects and the
different applications for processing the objects.

• Create, modify, search, retrieve and destroy the document objects and
relationships

 13

6. Organization and Enforcement Benefits

Some benefits of the recommended OO organization and enforcement approach
are the following.

6.1 Merging Documents
Consider an often-discussed use case for the cloud where a shared document D is

used by a group on the cloud. An individual user then downloads D, and edits it on his or
her desktop (a situation that might arise when connectivity is disrupted), thereby creating
version D′. Later, this user wants to upload his or her version and merge it with the cloud
version. This kind of use case is quite common in a software engineering setting in which
users often work offline and then merge their code changes with the repository;
contemporary source control tools provides ample tool support for such merge
operations.

Merging documents that are serialized in binary or some other cryptic proprietary
notation is clearly a nightmare. Fortunately, most contemporary applications use XML
notation when serializing their documents. XML notation however, does not solve the
problem because the merge operation is not well defined, as follows. First, typical XML
tags in most office documents are not semantic; rather, they identify editing information
such as lines, paragraphs, and fonts, information that cannot be used for semantic
merging. Secondly, consider an example where both documents D and D′ contain
element el; should this case be pronounced as a conflict or should there be two el fields in
the merged version? Clearly, if el is actually date then most readers would agree that that
field should be unique, that is, the two instances of el should be merged into one.
However, if el is actually expense date then D can contain a long list of expenses, i.e.,
both instances of el should be used in the merged document.

A schema such as in Figure 1 resolves these issues. If two ExpenseReport type
documents are merged then the schema clearly specifies that an ExpenseReport can
contain a plurality of ExpenseItem elements. Hence, the merge tool can simply create a
union of all expenses in the merged ExpenseReport. We propose that the UML schema
have a specification as to how to manage conflicts. For example, the schema also
indicates that the Date field of an ExpenseReport is unique; hence if the dates in both
merged documents do not agree, the merge tool will pick the most recent, or perhaps
even the date of the merge, depending on the UML specification that pertains to a merge-
conflict in that field.

6.2 Discovery
When a document is added to the cloud, with either enforcement scheduling

approach discussed earlier, a necessary precursor to schema enforcement is discovery, in
which we map an object to one or more schemas. The following mappings are suggested
to discover and map an instance document or applications object to a schema:

 14

1. The mapping of the document to schema classes; for example, per the schema of
Figure 1, when a PDF file is added to the cloud we need to discover whether it is an
instance of PMonthlyStmt, PTaxReturn, BMonthlyStmt, ExpenseReport, or
BTaxReturn.

2. The mapping of the document to other documents according to the relationships
described in the schema. For example, if the document discovered in step #1 is a
BMonthlyStmt class of Figure 1 then we need to discover its associated BTaxReturn
document, if it exists.

3. The mapping of the document’s parts, components, or elements to the properties of
the class discovered in step #1.

4. The mapping of applications to the methods specified for its class in the schema. For
example, if the class discovered in step #1 is a BTaxReturn class document per the
schema of Figure 1, then we need to discover the application that corresponds to
getExpenses method of that class.

Note that this is a significant departure from the way operating systems typically
view applications. While traditionally the domain and co-domain1 of an application are
mapped to one or more file objects, this mapping maps the domain and co-domain of the
applications to particular components, parts, or elements of file objects as specified in
mapping #3.

7. Workflow
The workflow consists of four main tasks organized in two primary workflows,

one for periodic scheduling and the other for event-driven scheduling. The two
workflows are depicted in the UML Activity Diagrams (ADs) of Figure 4. The four
tasks, denoted respectively as 1, 2, 3a, 4a in Figure 4(a) and 1, 2, 3b, 4b in Figure 4(b),
are:

1. Perform OO design, typically as UML class diagrams, such as the one shown in
Figure 1.

a. Classic OO design: hierarchical design, property design, method specification
(classical OO encapsulation), such as PMonthlyStmt being a subclass of
PersonalAcct in Figure 1.

b. Extended OO design: entity relationships in UML class diagrams, such as the
relationship between PMonthlyStmt and PTaxReturn in Figure 1.

c. Specify read/write permissions to operations, for example, getExpenses() of
BMonthlyStmt object in Figure 1 being a read-only operation.

d. Specify additional properties for merging.

1 Let f:A→B be a function from A into B. The set A is called the domain of the function f, and B is

called the co-domain of f.

 15

The result of this step is a rule schema, with the prevailing representation being an
XML Schema Definition (XSD).

2. Deploy objects and applications

a. Deploy objects on platform. For example, an expense report spreadsheet file is
deposited on the cloud or on operating system file system.

b. Deploy applications on platform, for example, deploying an expense report
browser on a cloud or operating system.

3. Discover objects and applications and map those artifacts to the rule schema

a. Periodic discovery of objects and applications, as discussed in the Discovery
section.

b. Event-based discovery of objects and applications, as discussed in the Discovery
section.

4. Schema enforcement

a. Periodic enforcement, for example during “end of crawl session.”

b. Event-driven enforcement, for example, by enabling or disabling objects and
applications to be checked in CC.

1 2 3a

4a

1 2

3b

4b

(a) Workflow when using periodic
discovery and rule enforcement

(b) Workflow when using event based (using CC)
discovery and rule enforcement

Figure 4. Activity diagram representation of workflow

The major difference between the two workflows is that there is a delay between
task 2 and tasks 3 and 4 when periodic discovery and rule enforcement is used.

 16

7. Prior State-of-Art
HyperText Markup Language (HTML) links provide a contemporary method for

the specification of document-to-document and document-to-application links. While
HTML links provide a reasonable technique for the implementation of links, one that can
be adopted by a realization of the ideas presented in this report, this is but one aspect of
the approach. In addition to the implementation of links our approach specifies and
enforces the following:

• Whether a link must exist

• The plurality of links

• The induced association of a link to a document by virtue of inheritance (i.e., if a
parent document has a protected or public association then a child document
enjoys that link too).

In addition, HTML links do not cater for the OO principle of encapsulation.

The article: “Build an Object-oriented File System in PHP”
(http://www.devx.com/webdev/Article/22240) describes a basic OO file system
approach. It differs from this proposal in the following key elements:

• The article focuses on web sites, not on general file systems or the cloud.

• The article does not address the specification and enforcement of the object-
relationship aspect of OO design and UML other than the inheritance relationship;
for example it does not deal with entity relationship as between BMonthlyStmt and
BTaxReturn in Figure 1.

• The article does not address the specification and enforcement of the OO
encapsulation principle, that is, it does not address the manner in which
applications are strictly associated with property elements of specific document
types.

The patent “Object oriented file system in an object oriented operating system,”
United States Patent 5758153, also describes a basic OO file system approach. It differs
from this proposal in the following key elements:

• The patent does not address the specification and enforcement of object
relationships other than classical OO features of inheritance and encapsulation,
namely it provides no method for the specification or general entity relationships
(e.g., as expressed by a UML class diagram).

• The patent addresses the OO principle of encapsulation in a limited manner
whereby the only supported operations are standard operations (such as create,
open, close, and property accessors) and their variations, rather than any general-
purpose application.

 17

• In addition, the patent does not address the specification and enforcement of
encapsulation, that is, the manner in which applications are restricted in their
access to pre-specified elements of specific document types.

• The patent ignores the issue of enforcement of document object relationships and
application to object relationships) because it does not cater for object-to-object
relationships other than inheritance.

Moreover, OO operating systems, such as a Java-based OS, do not necessarily
treat document objects and applications any differently than a C-based OS such as Unix.
Specifically, the OO document object and application relationships specification and
enforcement discussed in this paper are not addressed at all.

7. Conclusion
We have shown that using a universally understood formalism for specifying and

enforcing extended OO relationships, both between documents and between applications
and documents, is superior to the prevailing ad hoc method of achieving similar business
rules. The current transition from a desktop- to a cloud-centric work environment
provides an excellent opportunity to rethink not only how document objects and
applications are stored and delivered, but also the way they are organized.

Some of the benefits of the proposed approach are:

• Compositionality. A complex aggregate document can be adequately described by
a large collection of small documents organized in a well-defined manner.

• Maintainability. An aggregate document is easily updated by replacing small
constituent document elements while keeping the induced aggregate document
intact. Also, an application can be changed (e.g., from Microsoft PowerPoint to
the OpenOffice version) with assurance that that the new version still operates on
the intended fields of the intended object types.

• Correctness and Accuracy:

o When updating an aggregate document (e.g., by updating or replacing
constituent document objects), automatic rule enforcement maintains the
correct relationships within the aggregate.

o Applications are only permitted to operate on clearly specified elements of
specified document types, thereby reducing the risk of inadvertent data
corruption due to unintended consequences of execution of the application.

• Traceability. An integral part of the technology supporting OO rule-enforcement
is the ability to traverse associations.

• Sharing:

o An aggregate document schema can cross the boundaries of an individual
user.

 18

o Document objects can be shared by more than one aggregate document (as
long as the application specifications in all schemas are free of conflicts).

• Portability. When constituent objects are relocated, the enforcement rule
automatically validates that the constraints of all aggregate document schemas is
still maintained.

We showed that CC is a useful approach for enforcing document and document-
application relationships on the cloud. In addition, CC provides a mechanism and
gateway that can enforce security rules, and cater for versioning, traceability, and
portability, in addition to ownership recording.

There are many related topics this report has not addressed, such as security. For
example, when a document type specifies an application (e.g. Foo.exe) that can operate
on a specific property, how does an application on the cloud authenticate itself as
Foo.exe? This and other questions will need to be asked and answered to gain
momentum for adoption of CC.

THIS PAGE INTENTIONALLY LEFT BLANK

 19

Appendix A. XML schema (XSD) for UML class diagram of Figure 1

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xsd:schema xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
xmlns:financialdocs="http://financialdocs/1.0"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" ecore:nsPrefix="financialdocs"
ecore:package="financialdocs" targetNamespace="http://financialdocs/1.0">

<xsd:import namespace="http://www.eclipse.org/emf/2002/Ecore"
schemaLocation="platform:/plugin/org.eclipse.emf.ecore/model/Ecore.xsd"/>

<xsd:element ecore:ignore="true" name="Acct" type="financialdocs:Acct"/>

<xsd:element ecore:ignore="true" name="PersonalAcct"
type="financialdocs:PersonalAcct"/>

<xsd:element ecore:ignore="true" name="BusinessAcct"
type="financialdocs:BusinessAcct"/>

<xsd:element ecore:ignore="true" name="PMonthlyStmt"
type="financialdocs:PMonthlyStmt"/>

<xsd:element ecore:ignore="true" name="PTaxReturn"
type="financialdocs:PTaxReturn"/>

<xsd:element ecore:ignore="true" name="BMonthlyStmt"
type="financialdocs:BMonthlyStmt"/>

<xsd:element ecore:ignore="true" name="BTaxReturn"
type="financialdocs:BTaxReturn"/>

<xsd:element ecore:ignore="true" name="ExpenseReport"
type="financialdocs:ExpenseReport"/>

<xsd:element ecore:ignore="true" name="ExpenseItem"
type="financialdocs:ExpenseItem"/>

<xsd:element ecore:ignore="true" name="AggregateDoc"
type="financialdocs:AggregateDoc"/>

<xsd:complexType abstract="true" name="Acct">
 <xsd:attribute name="Name" type="ecore:EString"/>
 <xsd:annotation>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getName"/>
 </xsd:appinfo>
 </xsd:annotation>
</xsd:complexType>

<xsd:complexType abstract="true" name="PersonalAcct">

 20

 <xsd:complexContent>
 <xsd:extension base="financialdocs: Acct">
 <xsd:sequence>
 <xsd:element ecore:resolveProxies="true" maxOccurs="5"

 minOccurs="1" name="director" type="financialdocs:BusinessAcct"/>
 </xsd:sequence>
 <xsd:attribute ecore:name="SSN" name="SSN"

 type="ecore:EIntegerObject"/>
 <xsd:annotation>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getSSN"/>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType abstract="true" name="BusinessAcct">
 <xsd:complexContent>
 <xsd:extension base="financialdocs: Acct">
 <xsd:attribute name="taxID" type="ecore:EIntegerObject"/>
 <xsd:attribute ecore:reference="financialdocs:PersonalAcct" name="director"

 use="required">
 <xsd:simpleType>
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:list itemType="xsd:anyURI"/>
 </xsd:simpleType>
 <xsd:maxLength value="5"/>
 </xsd:restriction>
 </xsd:simpleType>

 </xsd:attribute>
 <xsd:annotation>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getTaxID"/>
 </xsd:appinfo>
 </xsd:annotation>

</xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="PMonthlyStmt">
 <xsd:complexContent>
 <xsd:extension base="financialdocs:PersonalAcct">
 <xsd:attribute name="month" type="ecore:EIntegerObject"/>

 21

 <xsd:attribute name="dateOfIssue" type="ecore:EDate"/>
 <xsd:annotation>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getStmtMonth"/>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="PTaxReturn">
 <xsd:complexContent>
 <xsd:extension base="financialdocs:PersonalAcct">
 <xsd:attribute ecore:name="tax_owner"

 ecore:reference="financialdocs:PMonthlyStmt" name="tax_owner">
 <xsd:simpleType>
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:list itemType="xsd:anyURI"/>
 </xsd:simpleType>
 <xsd:maxLength value="12"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="year" type="ecore:EIntegerObject"/>
 <xsd:attribute ecore:reference="financialdocs:PTaxReturn" name="prevYear"

 type="xsd:anyURI"/>
 <xsd:annotation>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getYear"/>
 </xsd:appinfo>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getExpenses"/>
 </xsd:appinfo>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getDeductibles"/>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BMonthlyStmt">

 22

 <xsd:complexContent>
 <xsd:extension base="financialdocs:BusinessAcct">
 <xsd:attribute ecore:reference="financialdocs:ExpenseReport"

 name="monthlyExpenseRpt" type="xsd:anyURI"/>
 <xsd:attribute name="dateOfIssue" type="ecore:EDate"/>
 <xsd:attribute name="month" type="ecore:EIntegerObject"/>
 <xsd:annotation>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getStmtMonth"/>
 </xsd:appinfo>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getExpenses"/>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BTaxReturn">
 <xsd:complexContent>
 <xsd:extension base="financialdocs:BusinessAcct">
 <xsd:attribute ecore:name="tax_owner"

 ecore:reference="financialdocs:BMonthlyStmt" name="tax_owner">
 <xsd:simpleType>
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:list itemType="xsd:anyURI"/>
 </xsd:simpleType>
 <xsd:maxLength value="12"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute ecore:reference="financialdocs:BTaxReturn" name="prevYear"

 type="xsd:anyURI"/>
 <xsd:attribute name="year" type="ecore:EJavaObject"/>
 <xsd:annotation>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getYear"/>
 </xsd:appinfo>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getExpenses"/>
 </xsd:appinfo>

 23

 <xsd:appinfo ecore:key="operations"
 source="http://www.eclipse.org/emf/2002/Ecore">

 <operation name="getDeductibles"/>
 </xsd:appinfo>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getProfit"/>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ExpenseReport">
 <xsd:attribute name="date" type="ecore:EDate"/>
 <xsd:attribute name="total" type="ecore:EIntegerObject"/>
 <xsd:attribute ecore:reference="financialdocs:ExpenseItem" name="item">
 <xsd:simpleType>
 <xsd:list itemType="xsd:anyURI"/>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:annotation>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getDate"/>
 </xsd:appinfo>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="getTotalExpenses"/>
 </xsd:appinfo>
 <xsd:appinfo ecore:key="operations"

 source="http://www.eclipse.org/emf/2002/Ecore">
 <operation name="changeExpense">
 <parameter name="e" type=ExpenseItem"/>
 </operation>
 </xsd:appinfo>
 </xsd:annotation>
</xsd:complexType>

<xsd:complexType name="ExpenseItem">
 <xsd:attribute name="date" type="ecore:EDate"/>
 <xsd:attribute name="cost" type="ecore:EFloatObject"/>
 <xsd:attribute name="description" type="ecore:EString"/>
</xsd:complexType>

<xsd:complexType name="AggregateDoc">

 24

 <xsd:attribute ecore:name="BusinessStuff"
 ecore:reference="financialdocs:BusinessAcct" name="BusinessStuff">

 <xsd:simpleType>
 <xsd:list itemType="xsd:anyURI"/>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute ecore:name="PersonnalStuff"

 ecore:reference="financialdocs:PersonalAcct" name="PersonnalStuff">
 <xsd:simpleType>
 <xsd:list itemType="xsd:anyURI"/>
 </xsd:simpleType>
 </xsd:attribute>
</xsd:complexType>

</xsd:schema>

THIS PAGE INTENTIONALLY LEFT BLANK

 25

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Research Sponsored Programs Office, Code 41
Naval Postgraduate School
Monterey, CA 93943

4. Professor Peter Denning
Naval Postgraduate School
Monterey, California

5. Professor Doron Drusinsky

Naval Postgraduate School
Monterey, California

6. Professor Bret Michael

Naval Postgraduate School
Monterey, California

7. Professor Thomas Otani
Naval Postgraduate School
Monterey, California

8. Professor Man-Tak Shing

Naval Postgraduate School
Monterey, California

9. Mr. John Shea

Office of the DoD Chief Information Officer
Arlington, Virginia

10. COL Kevin Foster, USA

Office of the DoD Chief Information Officer
Arlington, Virginia

11. Professor George Dinolt
Naval Postgraduate School
Monterey, California

 26

12. Professor Loren Peitso
Naval Postgraduate School
Monterey, California

13. Professor Scott Cote
Naval Postgraduate School
Monterey, California

14. Professor Albert Barreto
Naval Postgraduate School
Monterey, California

15. Mr. Alex Nelson
Naval Postgraduate School
Monterey, California

16. Mr. Scott J Dowell
Computer Science Corporation
San Diego, California

17. Mr. Michael Lee
Touchstone Consulting Group
Washington, D.C.

18. Ms. Karen Gordon
Institute for Defense Analyses
Alexandria, Virginia

19. Dr. Jeffrey Voas
National Institute of Standards and Technology
Gaithersburg, Maryland

20. Dr. Mark Lee Badger
National Institute of Standards and Technology
Gaithersburg, Maryland

21. Dr. Tim Grance
National Institute of Standards and Technology
Gaithersburg, Maryland

